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By
Jonathan Hull
May 2015
This thesis examines the spatial motion of a simple solid body with a gyroscopic
stabilizer following a defined path. The body’s motion is determined using a simplified
spatial computational spatial model. The track was designed to be equivalent to a single
swerving maneuver on a roadway and the body’s motion was analyzed at a multitude of
nodes before and after the addition of a gyroscope. The question was to determine
whether the addition of a fixed gyroscope could be used to passively reduce the
magnitude of the subsequent spatial motion of a body during a maneuver. The simulation
found that the body’s motion overwhelmingly dominated that of the gyroscope due to the
very large moments of inertia of the body. While gyroscopic effects were seen, the

computational model predicts that they will minimally affect the body.

www.manharaa.com



www.manharaa.com

o AJLb



PASSIVE GYROSCOPIC STABILIZATION OF A SOLID BODY

SIMULATED USING A COMPUTATIONAL SPATIAL MODEL

A THESIS
Presented to the Department of Mechanical and Aerospace Engineering

California State University, Long Beach

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Mechanical Engineering

Committee members:
David Stout, Ph.D. (Chair)
Jalal Torabzadeh, Ph.D.
Ramin Esfandiari, Ph. D.

College Designee:

Antonella Sciortino, Ph.D.

By Jonathan L. Hull
BS, 2006, California Polytechnic State University, San Luis Obispo

May 2015

www.manharaa.com




UMI Number: 1587289

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

—
Dissertation Publishing

UMI 1587289
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

www.manharaa.com




Copyright 2015
Jonathan Hull

ALL RIGHTS RESERVED

www.manharaa.com




ACKNOWLEDGEMENTS

Firstly, I would like to thank Dr. Stout for all of his help, advice, and guidance as
this project would have been near impossible to complete without him. I have sincerely
appreciated working with him, and he shall always have my highest esteem and respect.

Secondly, I would like to thank Dr. Hamel and the CSULB Department of
Mechanical and Aerospace Engineering. Dr. Hamel was immensely helpful to start this
effort, seemingly so long ago, and the Department made it all possible.

Lastly, but not least, I would like to thank my family. They have always
supported my efforts and encouraged me to continue by looking for that light at the end
of the tunnel even when I doubted it was there. I would have long ago gone adrift

without their support and care.

il

www.manharaa.com




TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...ttt ettt il

LIST OF TABLES ...ttt sttt ettt vi

LIST OF FIGURES ...ttt ettt vii

LIST OF ABBREVIATIONS ... .ottt X

LIST OF NOMENCLATURE ..ottt X
CHAPTER

1. INTRODUCTION .....ooitiiiiiitiiteeeeete ettt ettt sttt ettt e 1

1.1. Inspiration for Gyroscopic Passive Dampening............cccceeeveeieenirennnnnn. 2

1.2, Problem DEeSIZN ....c.ceiiiiiieiiieiie et 3

2. LITERATURE REVIEW .....ooiiiiiiiiiiie ettt 5

3. COMPUTATIONAL PROCESS AND PREPROCESSOR DERIVATIONS ...... 8

3.1. Computational Process Introduction ............cccceeevveeerieecvieeeiieeeieeenenn 8

3.2. General Assumptions, Body Geometry, and Coordinate System ......... 10

3.3. Track Geometry and DiSCretiZation ............ccecveervieeenieeeiieeecieeeieeeene 13

3.4, Track GEOMELIY ...ccuviiiieiiieiieiie ettt ettt et 15

3.5. Track Nodal Coordinates, Zone 1 ........ccccoeovvvvvvvieieiiee e 16

3.6. Track Nodal Coordinates, ZONE 2 .........coeeieiieiiiieieeeeeeeeeeieieiieeeeeeeeeeenns 17

3.7. Track Nodal Coordinates, Zone 3 .......cccceeeevieivvverieeeeeeeeeeiieeeeee e 19

3.8, ATC Leng@th..c.cooiiiiiiiieie s 20

3.9, TIME At NOGC .....eiiiiiiiiiiiiee e 22

3,10, CUIVATULE ...ttt 23

311, YaW ANGIC ittt e 23

3.12. Body ROIL ..o 25

www.manharaa.com




CHAPTER Page

3.13. ROIl AcCCEIEration........ccueevuiieiieiiieiieie ettt 30

314, YaW VeIOCIEY ..uiiiiiiieiie ettt et 30

315, CONCIUSIONS ....vveiiieiiieeiiieiie ettt ettt eenee s 31

4. MAIN BODY EQUATIONS OF MOTION .......cooiiiiiieiieniieeiieeie e 32
4.1. Equations of Motion and MOMENts ..........cccceeeueerieniieniienieeiieeeeeieene 32

4.2. Transformation MatriCeS ........ccvuvreriuireriieeeieeerieeerireeeeeeeeareeeraeesnee e 32

4.3. Unit Vector Transformation ............ccccceeeveerieniienieniienieeieeee e 34

4.4, POSIION VECIOT ...eiieiiiieiiiiieeiieeeiteeeiee et et e e e et eeetaeeeaaeessaeesnnae e e 35

4.5. ANGUIAT VEIOCIEIES . ..cecuvieiieiiiieiiecie ettt 36

4.6. INETtIA TENSOT 1oouvvieeiiieeiiie et e et eetee et e et e e e e e e e etaeeeaaeeesaeesnseeees 37

4.7. QUAdratic FOICES.....cuiiiiuiiiiiiiieeiie e e 38

4.8, CONCIUSIONS ..eeeiviieeiiieeciieeeiieeeieeeeieeeeteeestteeetaeeessseeesaeeeaneessneesnseeens 38

5. GYROSCOPIC EQUATIONS ...ttt 40
5.1. Angular Velocity and Transformations..........c.ccceeeeevvieerieeeiieesenieeene, 43

5.2, KiNetiC ENEIZY....cccuiiiiiiiiiiiiieiieie ettt 44

5.3. Moment Along Phi.......ccoociiiiiiiiiiiecece e 45

5.4. Moment AlONg PSi......ccccuiiiiiiiiiiieeiieie e 46

5.6. Moment Along Theta .......coeevviieiiiieeeeeeee e 47

5.7. Gyroscopic TREta .....cccoevuiieiiiiieiiieeee e 47

5.8, CONCIUSIONS ...evvieeiiiieciiie ettt et e e tre e e aae e s e e eans 48

6. SIMULATION RESULTS .....oooiiieeteteee ettt 50
6.1. Combined ReSults..........coocuiieriiiieiiiecieee e 50

6.2. Simulation INPULS .......cooiiiiiiiiieiii e 50

6.3. Simulation Results..........cccouiiiiiiiiiiieeiieee e 51

6.4. Simulation COoNCIUSION .........cccuieiiiieiieii ettt 59

7. CONCLUSION AND FUTURE DIRECTIONS .......coooiiiiiiieieeieeee e 60
APPENDICES ... .ottt ettt et ettt e s be et eeabeeseesnbeeseesnneens 62
A. MAIN PROCESSOR MATLAB SOURCE CODE .......c.cccoeviiiiiieiieiieeieeee. 63
B. PRE-PROCESSOR MATLAB SOURCE CODE .......cccceooiiiiiiiiieiienieeiieeee 67
C. VARIABLE INPUT SCRIPT MATLAB SOURCE CODE..........cccoccvevveienne 70
BIBLIOGRAPHY ..ottt ettt ettt ettt ettt esnaeesaesnnaens 73

v

www.manharaa.com




LIST OF TABLES

TABLE Page
1. Preprocessor Variables and Units .........coccvereriiiiiiiinienienieniesieeeeiceeeeee e 10
2. Computational Model ASSUMPLIONS .....ccuerueruiririeiiieieniesenie sttt 11
3. SIMulation INPUL....c..coiiiiiii e 53
vi

www.manharaa.com




LIST OF FIGURES
FIGURE Page
1. Computational process showing that the preprocessor prepares a data
array that is read by both the main processor and the gyroscopic

Processor SIMUItanEoUSLY. ........cooiiiiiiriiiiieie e 8

2. Diagram representation of body above the ground plane and connected
via a massless offset with a rotary spring and rotary damper. ........................ 14

3. Diagram of body in space showing the relation between the global
coordinate system and the local coordinate system. ............ccceeecveervereeenenne. 14

4. Diagram of the body moving along the associated track zones and nodal
ISCTEHIZALION. ...ttt 15

5. Diagram showing the general geometry of the track and associated zones........ 16

6. Trigonometric construction to calculate XY components of radial curved

track SECtioN OF ZOMNE 2...c..eouiiiiiiiiiiiieieeeeee et 18
7. Free-body diagram of solid body at roll angle ¢........cccccoevveviiieiiiiiiiee 26
8. Diagram showing the body traversing the defined path with its local

coordinate system in relation to the global coordinate system. ...................... 33
9. Diagram of geometry used to determine the body’s position vector. ................. 36

10. Diagram of body showing relative spatial position of gyroscope along

With basic ZyroSCOPIC ZEOMEIIY........evvieruieeiieiieeieeiee ettt ettt ereeiee e ens 40
11. Diagram of gyroscope with its associated geometric parameters as

viewed orthogoNally.........coociiiiiiiiiiii e 41
12. Rotational axes Of GYTOSCOPE. ..cccuvireriieeiiieeiiieeite ettt e et es 41

13. Roll moment M¢ with respect to time of the body without the gyroscopic
stabilizer, and of the body after addition of the gyroscopic stabilizer............ 54

vii

www.manharaa.com




FIGURE

Page
14. Roll moment M ¢ of the body and of the gyroscope on separate axes. ............ 55
15. Pitch moment M6 with respect to time of the body before and after the
addition of the EYTOSCOPE. ..c..ueiiviiiiieiieiie et 56
16. Total yaw moment of the body and the combined body-gyroscope
TESUITANE. 1.ttt sttt et 57
17. Yaw moment of the body resultant and the gyroscope on separate axes.......... 58

viii

www.manharaa.com




CG

GCS

LCS

TCS

LIST OF ABBREVIATIONS
Center of Gravity

Global Coordinate System
Local Coordinate System

Trajectory Coordinate System

iX

www.manharaa.com



LIST OF NOMENCLATURE

A Transformation Matrix
bN Total Quantity of Boundary Nodes
Ci Rotational Damper Constant
Far Applied Forces Vector, Orthogonal
Fao Applied Forces Vector, Rotational
Fe Centripetal Force
For Quadratic Forces Vector, Orthogonal
Foe Quadratic Forces Vector, Rotational
g Earth Gravitational Constant
G Unit Vector Transformation Matrix
G Unit Vector Transformation Matrix in LCS
h Body Support Height
H Height From Point O to CG
i Node
ipN Boundary Node
irn Radial Node
itn Tangent Node
Ioo Body Inertia Tensor in LCS

X

www.manharaa.com




199 Gyro

L1

L2

L3

Inertia Tensor of Gyroscope

Polar Moment of Inertia of Body in Direction of Phi
Track Curvature

Rotational Spring Constant

Body Length

Body Width

Body Height

Mass of Body

Slope of Tangent Track

All Moments About Point O in FIGURE 7
Gyroscopic Moment in Theta

Gyroscopic Moment in Phi

Gyroscopic Moment in Psi

Nodal Quantity

Length of Hypotenuse of vt-P-R

Radius of Curved Track

System Resultant Accelerations, Orthogonal
Total Quantity of Radial Nodes

Arc Length within Zone

Arc Length

Boundary Distance

Total Length of Boundary

xi

www.manharaa.com



<l

x1

x2

yl

V2

z1

Width of Lange Change

Total X Length of Zone 2

Total X Length of Zone 3

Total Y Length of Zone 2

Total Length of Zone 3

Time

Total Tangent Nodes

Kinetic Energy of Gyroscope

CG Position Vector in LCS

Speed of Body

LCS X Position Coordinate

Total X-length of Zone 2

GCS X Position Coordinate

LCS Y Position Coordinate

Total Y-length of Zone

GCS Y Position Coordinate

LCS Z Position Coordinate

GCS Z Position Coordinate

Co-Interior Angle of Triangle in FIGURE 6
Co-Interior Angle of Triangle in FIGURE 6
Co-Interior Angle of Triangle in FIGURE 6

Angular Orientation of Gyroscope

xii

www.manharaa.com



]./Gyro

3

< & &= S B &

Q'Body

-QBody

Q'Gyro

Angular Velocity of Gyroscope

Angle of Rotation of Tangent Track in FIGURE 6
Initial Roll Perturbation

Pitch

Pitch Rate

System Resultant Accelerations, Rotational
Angular Orientation Vector of Body
Gyroscopic Pitch

Gyroscopic Angular Velocity

Pi

Roll

Roll Rate

Roll Acceleration

Yaw

Yaw Rate

Yaw Acceleration

Angular Velocity Vector of Body

Angular Velocity Vector of Body in LCS

Angular Velocity Vector of Gyroscope in LCS

xiil

www.manharaa.com



CHAPTER 1
INTRODUCTION

It is an all too common experience for the modern automotive driver to encounter
a cargo vehicle on a public roadway that has overturned or experienced some sort of
accident. According to US Department of Transportation data from 2012 [1], rollover
caused 5 percent of all fatal crashes and 3 percent of all nonfatal crashes involving large
trucks. In terms of large truck crashes by severity [1], this corresponds to 152 fatalities
and 4,000 injuries for 2012. Further, truck rollover caused an additional 4,000 accidents
resulting in property damage only [1].

As such a seemingly common event leads to so much damage and personal
tragedy for those involved, one considers what might be done to help society? One could
reasonably argue that it would be a great benefit to the driving, and consuming, public if
a means were engineered to help reduce this type of accident. A mechanical stabilizing
device could be an ideal means to effect accident reduction as rollover is caused by a
transient reduction of vehicular stability. Further, if this stabilizer was passive in its
effect, then vehicles could be equipped such that the driver would not need to provide
additional input or alter his driving technique. In this way, the stabilizer could provide an
additional type of redundancy to the vehicle’s existing safety systems.

However, it is a difficult problem to design a passive mechanical stabilizer to

alter a large vehicle’s dynamics. Fortunately, history lends some guidance and one
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readily finds past attempts to use gyroscopes as both passive and active mechanical
stabilizers in road vehicles, ships, and rail cars. These past attempts have had varying
degrees of success and acceptance but have not specifically been applied to tractor-
trailers. This thesis proposes a means by which to evaluate a passive gyroscopic
stabilizer using a simplified computational body model. The proposed model simulates
the system spatially using computational dynamics and allows an evaluation to be made
of the body’s performance before and after the addition of a simple gyroscope. Further,
the proposed model is intended to be conceptually and mathematically approachable in its
derivation for the benefit of those who might use it and expand upon it in the future.

1.1. Inspiration for Gyroscopic Passive Dampening

Experienced bicyclists and motorcyclists learn in the course of their training that
their vehicle’s trajectory is opposite in direction to the motion of the steering column.
For example, should a motorcyclist wish to move left he must steer right. The reverse is
true for moving right, and a likewise situation exists for bicyclists moving at high speeds.
This phenomenon is explained via gyroscopic precession and nutation caused by the
vehicle’s wheels rotating with a high angular velocity. Motorcyclists have an additional
gyroscopic effect induced by the engine crankshaft while bicyclists have a lesser
corollary via the drivetrain cranks, and chain rings. In both cases, the vehicle wheels are
composed of qualitatively large masses distributed at a distance from a central spindle
and rotating very quickly. In the study of dynamics such a device is considered a
gyroscope and has unique properties while rotating about its spindle. A gyroscope will
attempt to maintain its initial inertial reference frame after rotation. This is to say that the

gyroscope resists motion that is contrary to maintaining the initial position of its axis of

2
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rotation after it has begun rotating. The effect of this phenomenon is an induced moment
that is mutually orthogonal to the input motion. The classic classroom example of this is
the student holding a bicycle wheel forthright by its axle while sitting in a rotatable chair.
After a few turns of the wheel by the teacher, the student is able to rotate himself and his
chair simply by twisting the now spinning wheel. This effect is the same as that
experienced by both motorcyclists and bicyclists with the motorcyclist’s experience
amplified due to the relative high speeds and masses involved.

Therefore, in expanding upon this common experience, it is wondered whether a
gyroscope can be used to passively induce a moment via a body’s motion that is contrary
to that motion? If the body’s motion would be such that it would cause the body to
overturn, as in the case of a vehicle, then a contrary moment may help to lessen the
potential to overturn. Therefore, the gyroscope could be used as a passive dynamic
stabilizing device for a large tractor-trailer.

1.2. Problem Design

The scope of this thesis is to develop a simplified computational model that can
assess the performance of a gyroscope fixed within a moving body, and whether this has
a general positive effect on undesirable body motions passively. The body shall be a
simple rectangular prism with dimensions and mass mimicking that of a commercially
available American tractor-trailer. Undesirable body motions are those motions that
would cause the body to become singular with respect to its path, as in the body
overturning. A reasonable assessment of the body’s status and whether its disposition has
either improved, worsened, or is a mix of the two can be determined by analysis of the

body’s moments. Chapter 3 presents the computational process necessary for this
3
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assessment, input assumptions, and derivations of the preprocessor. In Chapter 4, the
body’s spatial equations of motion are derived for the main processor, while Chapter 5
derives the gyroscope’s spatial equations of motion used in the gyroscopic processor.
Chapter 6 demonstrates how the body and gyroscopic models are combined to determine
the resultant with the presentation of those results. Finally, Chapter 7 presents
concluding thoughts and future directions for continued research. The computational
model is implemented in MATLAB using m-code script files whose source code is

presented in the appendices.
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CHAPTER 2
LITERATURE REVIEW

Throughout the history of ground vehicle design there has always been the issue
of the vehicle’s propensity to overturn during a maneuver when conditions permit. This
is also a potential hazard for a vehicle’s trailer, and in the case of commercial cargo
trailers, significant injury, death, and loss of property can occur if the trailer overturns.
Accordingly, significant effort has been placed into creating tractor-trailer stability
models and to this end work has generally focused on creating a system of equations to
adequately model the system with subsequent verification of that model. Some
elementary approaches use a quasi-static summation of the body moments [2] with and
without suspension compliance [3]. Other models focus on modeling the system [4] by
means of mass-acceleration and free-body diagramming techniques to generate a set of
linear differential equations. Other work has developed a set of differential equations of
motion based on the system’s kinematics with the addition of multiple coordinate systems
and a control model [5].

In parallel, and unrelated to the development of tractor-trailer stability models, is
the issue of rail car stability and rollover. Much like tractor-trailers, rail cars are also
prone to the hazard of overturning in certain conditions. Modeling approaches in this
realm have taken similar lines of thought as those of trailers, but with multibody spatial

analysis [6] and the use of multiple coordinate systems [7]. Further work has focused on
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the induced moments of the cars’ wheels and analyzed by a numerical processor [8].

While the currently available models help to predict vehicle roll, for both the
tractor-trailer and rail car, they do not offer solutions for amelioration. In the case of
tractor-trailers, currently available commercial products for roll control tend to focus on
electronic control by interfacing into the vehicle’s braking system [9]; rail cars do not
have similar turnkey products available. However, since the early 20" century various
parties have worked on providing a solution to vehicle roll stability using gyroscopes.
Such technology has been implemented in the Brennan monorail, Schilovski gyro car,
and the Ford Gyron to name but a few [10]. Gyroscopic stabilization technology has also
been implemented in oceangoing vessels [10,11] to control the ship’s roll due to waves.
Much like the development of ground vehicle and rail car roll models, gyroscopic
stabilization models have focused on development of a set of differential equations of
motion [11] specific to the device.

Regarding the state of the art of tractor-trailers, no known model exists that
combines the elements of all three independent efforts. A computational trailer spatial
model has not been combined with the track trajectory assumption of the rail car, nor
combined with a passive gyroscopic stabilizer. Additionally, while existing efforts have
independently created portions of the modelling elements presented in this thesis, their
derivations tend towards less expedient implementation and usage. The model presented
herein addresses the issues of simplifying a trailer analytical model while assessing its
spatial performance with and without a passive gyroscopic stabilizer. The proposed

model builds upon well-known concepts and combines them in a novel fashion. Further,
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the derivations presented address the issue of expediency by permitting their

implementation in modular, computational processors.
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CHAPTER 3
COMPUTATIONAL PROCESS AND PREPROCESSOR DERIVATIONS

3.1. Computational Process Introduction

To begin development of the analytical model presented in this thesis, the general
computational process and ideology were adapted from Shabana’s work on railroad
dynamics [6]. The primary inspiration taken from Shabana’s work is in the discretization
of a defined path geometry to provide a body with a motion trajectory and motion data.
The computational process and associated MATLAB functions, as implemented, are

shown in Figure 1.

Preprocessor
(PrePro)
Math Gyroscopic
Processor |« » Processor
(ManPro) (GyroPro)

_ |Post Processor
1 (PostPro)

FIGURE 1. Computational process showing that the preprocessor prepares a data array
that is read by both the main processor and the gyroscopic processor simultaneously. The
gyroscopic processor in turn feeds its data array to the main processor for completion of
the final data array, which is formatted for viewing, by the post processor.

8

www.manharaa.com



The body’s resultant motion data is calculated via a custom written math
processor run in MATLAB whose input data is provided by a preprocessor. The
preprocessor’s calculations are determined a priori by the assumptions of the general
model. The math processor’s output is in turn passed into the post processor for
generating plots and formatting data for review. In parallel with the math processor is the
gyroscopic processor which uses the same input data as the math processor to augment
the main data for the resultant solution. In this way, the final output data of the body with
the gyroscopic stabilizer can be compared to data without the gyroscopic stabilizer as the
outputs are segregated.

The first block in the process flow shown in Figure 1 is the preprocessor. The
preprocessor’s data output is directly determined from the assumptions applied to the
general model and is further determined by direct application of geometric relationships.
The preprocessor calculates 11 outputs for use as inputs to the math and gyroscopic
processors and are detailed in Table 1.

This model is unique from previous work by its combination of several topics that
have been treated separately and by its focus on simplification. Previous tractor-trailer
modeling efforts [3, 4] have focused on generating 2D equations of motion for the system
via mass-acceleration, free-body diagramming, or quasi-static assumptions. Such work
also neglected the induced spatial body moments and a vehicle path trajectory. Previous
work on rail cars applied a discretized track model to a rail car by using global, local, and
trajectory coordinate systems [6]. While such an approach simplifies concerns for later
application of constraints, it necessitates calculations of multiple coordinate transfers that

tend towards computational burden.
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Finally, existing work on gyroscopic stabilization has focused on complex
differential equation analysis of the bodies without application via a discretized
computational approach [11]. The approach presented in this thesis attempts to address
all issues simultaneously by use of a model that is highly approachable to the user in
terms of its analytical complexity but yields relevant performance data for a gyroscopic
stabilizer within a trailer. The issue of body motion, resultant body effects, and a means
by which to pacify that motion are considered all while using a model that is still

qualitatively approachable from a user’s perspective.

TABLE 1. Preprocessor Variables and Units

Processor . ) Math
Variable Description Units Notation
N N Not Applicable N
S Arc Length in S
CH Radius of curvature in! 1/R
PHI Roll rad [0}
THETA Pitch Rad 6
PSI Yaw Rad Y
X X coordinate In X
Y Y coordinate In Y
Z Z coordinate In Z
DPHI Roll rate rad/sec )
DPSI Yaw Rate rad/sec )

3.2. General Assumptions, Body Geometry, and Coordinate System

To simplify the model into a suitable form for investigation of a gyroscopic

stabilizer, it is assumed that the body is a simple rectangular prism, at some distance from

www.manharaa.com



a plane, and connected to a defined path. The full list of assumptions is detailed in Table

2[12].

TABLE 2. Computational Model Assumptions

Assumption Description Definition
No.
1 Body Shape Simple Rectangular Prism
2 Body Dimensions and Mass 1988 Pines 48ft tractor trailer
3 Path Idealized Swerving
4 Body Path Coupling Massless
5 No Pitch Body is gssur.ned to .roll and yaw only,
pitch is considered zero
6 Speed 55 mph (968 in/sec)
7 Maneuver Time 5 seconds
8 Lane Distance 12 feet [13]

As the purpose of this model is to determine the effect of a gyroscopic stabilizer

in a body for trailer applications, the simple rectangular prism is modeled using basic

dimensions and mass from a 1988 Pines tractor-trailer [12]. This is done in order to

create a highly simplified tractor-trailer geometry. The body is offset from the XY

ground plane by a distance h that is to account for the suspension system offset. The

distance h is assumed massless and is used as a means by which to avoid calculating

multiple coordinate transfers. Note that if distance h were not massless then its rotational

inertia would have to be considered and a trivial origin offset within the body’s inertia

tensor would not suffice.

In a method similar to previously developed models [6], the general model uses

multiple coordinate systems; a local coordinate system (LCS) is attached to the moving

11
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body and a global coordinate system (GCS) is attached to a global origin. However, this
model differs from previous designs [6] by the lack of a trajectory coordinate system
(TCS) and associated transformations. Within the current model, the motion of the body
in the GCS is determined via Euler angle transformations of the body’s motion in the
LCS [14]. In this way, the body’s motion can be determined within its own coordinate
system from the track geometry and global assumptions while the motion is then mapped
back to the GCS through a single Euler angle transformation.

To provide simplification to the model, the LCS origin is attached to the XY
ground plane and the body is offset by a distance as explained. This is done in order to
remove another set of transformations and simplify the calculations. The alternative
would be to attach the TCS to the track, transform the trajectory defined by the TCS to
the LCS, and then finally transform the body’s motion in the LCS to the GCS. Such an
approach can increase the computational complexity without necessarily adding greater
insight into the overall gross behavior.

Finally, the current model differs from previous designs by the use of a rotary
spring and damper as shown in Figure 2. The spring and damper add a higher degree of
fidelity to the model as these devices are encountered in actual applications. Further, the
use of a spring and damper enables the body’s motion to both be initiated and to avoid a
numerical singularity during the simulation. Without a spring, once the body engages in
motion under gravity the body will continue to fall until it encounters the XY ground
plane; this would be represented by a numerical singularity as the body has now
effectively crashed in physical terms. Figure 2 and Figure 3 show the general body

model and its relation to the GCS.
12
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3.3. Track Geometry and Discretization

Figure 4 shows the design of the predefined track and associated nodal
discretization. The equations of motion evaluate the body at a single instance, and in
order to generate a motion history, it is necessary to evaluate the body at multiple
instances. This is accomplished through discretization of the track into an arbitrary
number of nodes and evaluating the equations of motion at each node. The number of
nodes can be defined just prior to a simulation run with a higher number of nodes leading
to smoother motion topography at the expense of computational time.

The track is designed to simulate an idealized single object avoidance maneuver
performed by a body while moving. The body is initially travelling along a straight path,
makes a sudden swerve to the left at some radius R, and continues along a new straight
path that is tangent to the exit of the radial curve. The path is broken into four segments,
zone 1, zone 2.1, zone 2.2, and zone 3. These zones define the initial straight boundary,
curve entrance, curve exit, and the exit tangent [6]. The curve radius can be arbitrarily
determined and ultimately depends on the actual body’s configuration. For the
simulation in this thesis, the radius is arbitrarily selected to provide a measurable
response.

As the body travels along the track, it is assumed that the body remains tangent to
the track’s geometry. Further, since the speed and maneuver time are defined in the
assumptions, the distance traveled per node is determined from geometric relationships.
Note that zone 2 is composed of segments 2.1 and 2.2; this is done for computational

implementation of the model.

13
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Front View Side View

e B |

cG cG

thfhl(t

/ 7/ 7 7 7/ /

FIGURE 2. Diagram representation of body above the ground plane and connected via a
massless offset with a rotary spring and rotary damper.

Local Coordinate System

+/Y \

Global Coordinate System

FIGURE 3. Diagram of body in space showing the relation between the global
coordinate system and the local coordinate system. The body is offset from the global
coordinate system by a massless connection while the local coordinate system is attached
to the XY plane.
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+Y

Direction of Motion
Nodal 4{

i Discretization

i Zone 1, Boundary Nod!

FIGURE 4. Diagram of the body moving along the associated track zones and nodal
discretization. The track is broken into three zones for computational purposes and
geometric analysis.

3.4. Track Geometry

As described within this thesis, the preprocessor defines eleven variables for use
in the main processor. Of these eleven, the X, Y, and Z coordinates need to be
determined first as other preprocessor variables rely upon the body’s XYZ location.
Since the body is assumed to be traveling along a perfectly flat XY plane, and the GCS is
attached to that plane, the Z coordinate is always zero. In order to calculate the nodal XY
positions, it is necessary to apply descriptive geometry to the track as shown in Figure 5.

The schematic representation of the track in Figure 5 can be considered as
consisting of three elements connected together. A single straight segment is connected

to another straight segment, at some arbitrary slope, via a tangent radial curve with some

arbitrary radius.
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| . | N Zone2
‘ Zone 1- [Zone 2 Zon Mirror

FIGURE 5. Diagram showing the general geometry of the track and associated zones.

These three curves compose zones 1, 2, and 3. In order to fully define the motion within
the model, it is necessary to mirror zones 1 and 2. Mirroring zones 1 and 2 allows the
body to establish its geometric boundary conditions. Without such an assumption it
would not be possible to establish entry and exit points within the model based on the
geometry. To define the body on the track an assumed lane distance, body speed, and
maneuver time are made. The lane distance Spang 1s equal to 12 feet which is the center-
to-center distance of two freeway lanes in California [13]. The speed is assumed as 55
miles per hour, and the maneuver time assumed as 5 seconds.

3.5. Track Nodal Coordinates, Zone 1

As the path is in line with respect to X in zone 1 and zero with respect to Z, the only
coordinate to calculate is X as Y is always equal to zero. Therefore, the initial X ordinate

at node 1 is zero and is initialized by:

x1(ipy =0)=0 (1

Subsequent X ordinates are calculated by dividing the assumed zone 1 length over the
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desired number of nodes and summing recursively:

sB
i = i — 2
x1(py + 1) = x1(Ipn) + bN (2)

By dividing the assumed length of zone 1 over the desired nodal quantity, zone 1 is
discretized with the nodal quantity determining the discretization width.

3.6. Track Nodal Coordinates, Zone 2

Zone 2 is composed of two segments, the radial entrance and the radial exit [6],
and these are labeled as zones 2.1 and 2.2 respectively. It is necessary to split zone 2 into
two halves in order to simplify dependent calculations within the preprocessor. Unlike
zone 1, zone 2 is circular and is composed of both X and Y coordinates. For
computational implementation, zone 2 is first discretized and then split into sub-zones 2.1
and 2.2.

The respective X and Y distances of all of zone 2 can be calculated via
trigonometric relations using the assumed lane distance, speed, and maneuver time.
Figure 6 shows the trigonometric constructions necessary to calculate the X and Y
lengths of zone 2. Firstly, to determine the X and Y lengths of zone 2, it is necessary to
determine angle ¢ which is the angle swept by the used radial portion of the track. Using
¢, it is then possible to find the respective zone lengths through elementary trigonometric

relations.

Per Figure 6, we utilize right triangle vt-P-R and right triangle R_R_E rotated by

P
angle ¢ and containing interior angle 8. The hypotenuse of this right triangle R_R_E is

exactly half that of right triangle vt-P-R.
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FIGURE 6. Trigonometric construction to calculate XY components of radial curved
track section of Zone 2.

P
Angle £ in Figure 6 is found from triangle R_R-;

p= cos-l( = ) (3)
\/(Ut)z + (SLane - ZR)Z

Angle « is found from right triangle vt-P-R:

-1 Siane — 2R
vt

(4)

a = tan

However, per Figure 6, { and y form a right angle and therefore after rearranging and

substituting terms:

s

(=5-B-a (%)
With angle ¢ and the known radius of curvature, the x-length of zone 2 is found by the
sine of {:

x2 = Rsin{ (6)

The y-length of zone 2 is determined from the difference between the radius and the
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y-component of the swept length:

y2 =R(1 —cos{) (7
X-component discretization within zone 2 is initialized at the first zone 2 node, which is
also the last zone 1 node. Subsequent nodes are determined by dividing the entire x-

length of zone 2 by the desired nodal quantity and summing recursively:

) ) Sx2
x(ley +1) = x,(in) + ﬁ 8

As the y-coordinates follow the path of a circle, subsequent coordinates can be

determined via the x-coordinates and the equation of a circle:

y2(irn) = _\/RZ —x2(irn) — x1(py = BN)* + R )
As the x-coordinates have already been discretized within zone 2, the y-coordinates are
accordingly discretized via their dependency.

3.7. Track Nodal Coordinates, Zone 3

Similar to zone 2, zone 3 is composed of X and Y coordinates with all Z
coordinates again equal to zero. However, unlike zone 2, zone 3 does not have a radius
of curvature and is a straight line with an arbitrary slope that is tangent to zone 2 and its
mirror. Therefore, the beginning of zone 3 lies at the terminus of zone 2, and the
converse being true for zone 2’s mirror. As zone 3 is a straight line, the standard
expression of a line with a slope can be used. The length of zone 3 is found by taking the
difference of the maneuver distance and two times the x-distance of zone 2, S,,:

Sy3 =Vt — 25,2 (10)
Note that the first node of zone 3 is the last node of zone 2. X-coordinate discretization is
completed by dividing the length over the number of desired zone 3 nodes:
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S
xlien + 1) = x3lien) + 337 (an

The y-coordinates of zone 3 are found from the basic equation of a line at some
slope. To determine the y-coordinates, it is necessary to use the x-coordinates of zone 3
as input to determine the line’s slope. The line’s slope is determined by the lane distance
and points of radial tangency per Figure 6:

_ SLane - 25y2
vt — Zsz

(12)
With the slope in hand, the y-coordinates can be calculated by using the distance of zone
2 as the y-intercept and summing recursively:

v3(ien) = M[x3(ipn) — x2(iy = rN)] + S5 (13)
With both the x and y coordinates of the zone 3 nodes known, zone 3’s geometry is now

fully defined and discretized.

3.8. Arc Length

To determine the time increment and track curvature at each node it is necessary
to calculate the arc length [6]. The arc length is the length of traversed track as measured
from the origin to any specific node. The arc length can be determined exclusively from
the track geometry and previous nodal coordinate expressions. Firstly, the arc length at
each node within zone 1 must be determined. This is readily accomplished by dividing
the total zone length over desired nodes and summing recursively. The first node of zone
1 is initialized as zero and subsequent nodes are found by summing the previous nodal

arc length with the arc length increment:

Sp
[ = [ —_— 14
S1(ipy +1) = 51(ipy) + bN (14)
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The arc length for zone 2 is determined by first splitting zone 2 into two halves.
This process is not necessary in itself for calculating the arc length, but simplifies later
computational implementation. Zone 2 is therefore composed of an entrance half and an
exit half, and is implemented by halving the desired zone nodes and counting within.

The first node of sub-zone 2.1 is initialized as the last node of zone 1. Subsequent
nodes within sub-zone 2.1 are found by summing the previous node with the length

increment:

. . R¢
So1 <l% + 1) = Sy1 (l%) + m (15)

The nodal arc lengths of sub-zone 2.2 are determined in much the same way as sub-zone
2.1. The first node of sub-zone 2.2 is initialized as the last node of sub-zone 2.1. The arc
length at all nodes following the initial node are determined by summing the previous

nodal arc length with the arc length increment:

. . R¢
S0 <l% + 1) = Sy2 (l%) + m (16)

The nodal arc lengths within zone 3 are determined by initializing the first node as the
last node of sub-zone 2.2. Remaining nodal arc lengths are determined likewise to zones
1 and 2 through summation of the previous nodal arc length and the arc length increment.
The arc length increment of zone 3 is the total arc length divided by the zone 3 quantity

of nodes. The total arc length of zone 3 is determined from Figure 6:

2
S; = J (vt — 25,2)% + (SLane — 2Sy2) (17)

The nodal arc lengths are therefore:
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S
S3(iey + 1) = s3(ieny) + t_lfl (18)

With the arc lengths of zones 1 through 3 now known, the arc length can be used in later
calculations of the nodal time increment and parameterization of variables with respect to
arc length, as needed.

3.9. Time at Node

The time at each node is calculated by dividing the arc length by the body’s
constant speed. As the body is assumed to have a constant speed, and the body is
traversing a distance given by the arc length, the time readily determined. Note that the
times determined within sub-zone 2.2 must be rounded down in order to avoid numerical
errors within the preprocessor. To begin, the time increments within zone 1 are
initialized by dividing the arc length at the first node by the body’s speed. The time at

subsequent nodes is found by dividing their arc lengths by the body’s speed:

s1(ipn)
v

(19)

t1(ipn) =

The first node of sub-zone 2.1 is initialized as the last node of zone 1. The time at the
first node of sub-zone 2.1 is found by dividing the associated arc length by the body’s
constant speed. The time increments at subsequent nodes are likewise found by dividing
their associated arc lengths by the body’s constant speed:

i) - 2202) &

> v

Sub-zone 2.2 is initialized with its first node being the last node of sub-zone 2.1. The
time at all other nodes within sub-zone 2.2 is found by dividing the associated nodal arc

length by the body’s constant speed:
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t2.2 (lﬂ) = @ (21)

2

The time at the first node of zone 3 is found by initializing as the last node of sub-zone
2.2. Subsequent nodes are found the arc length to that node by the body’s constant

speed:

s3(ien)
- (22)

t3(ien) =

With the time fully defined within zone 3, the time increment for each node within all
zones is now known.

3.10. Curvature

The track consists of two straight sections connected tangentially via a semi-
circular curved section. For both straight sections the curvature is zero at each node, and
for the curved section, the curvature is constant at each node [6]. Therefore, the
curvatures within zones 1 and 3 are always equal to zero, and the curvatures within zone

2 at all nodes are equal to:

i) = e3)

3.11. Yaw Angle

The yaw angle ¥ can be calculated from the path curvature using a standardized
form [6]. As the body must turn for it to yaw, its yaw angle will be zero for the initial
straight section of zone 1:

Y1 (ipy) =0 (24)
As the body enters the curved radial section of zone 2, it will begin to turn and hence

yaw. The first node of sub-zone 2.1, ¥, 1|1, is initialized as the last node of zone 1. To
23
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use the expression for the yaw angle [6], the initial and final nodes of the arc length and
curvature must be defined for sub-zone 2.1. The initial and final arc lengths within sub-

zone 2.1 are defined as s, 4|1 and s, 1 |rn, respectively. The curvature at the final node
2

within sub-zone 2.1 is defined as k, 1|rn. Using these definitions, the nodal yaw angle
2

within sub-zone 2.1 is:

Y21 (l%> =21l + ( ! kz.lzlg <52.1 (l%> - 52.1|1)2 (25)

32.1|ﬂ - 32.1|1)
2

Note that the total nodes rN within zone 2 are divided by two to account for the two sub-
zones. The first node of sub-zone 2.2, ¥, , |4, is initialized from the last node of sub-zone
2.1. Like sub-zone 2.1, let the initial and final arc lengths within sub-zone 2.2 be defined

as S,,|; and s, ,|r~, respectively. Let the curvature at the first node within sub-zone 2.2
2

be defined as k, ,|;. The expression for the yaw angle [6] within sub-zone 2.2 becomes:

Y2, (lg) = 1/&.1'% + ( - <_ k2.22|1 (SZ'Z (l%) - 52_2|%)2>

52.2|ﬂ - 52.2|1>
2

(55 o)

As the body exits zone 2, it ceases to turn and therefore ceases to yaw leaving its yaw

(26)

angle fixed for all remaining nodes thereafter. Within zone 3 the yaw angle remains

constant as the final yaw angle upon exit from zone 2 where 1, , |,y is the final yaw

angle in sub-zone 2.2:

lpB(itN) = lp2.2|rN (27)
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With the yaw angles defined within all three zones, the only angle yet to be defined is the
body’s roll.

3.12. Body Roll

To determine the body’s roll, the body is modeled as a sprung mass rotating about
a fixed point with a rotary spring and damper. This is essentially a version of the classic
rotating spring-damper-mass problem. Several assumptions must be made for the body
to negotiate the track’s geometry. The body is assumed to be a simple solid rectangular
prism supported above the track by a massless support. The point at which the support
intersects the track is the local body origin and is attached to the XY plane. The
centripetal force and weight act at the center of gravity and both are located at the
centroid. All angles are considered small, and therefore permit linearization, enabling the
body to be modeled using a second order, linear, non-homogeneous, differential equation.
Figure 7 shows the free-body diagram of the solid body at roll angle ¢. To find an

expression for the roll angle with respect to time, the moments about O are first summed:

Z My = Jp¢ =mgHsing — FH cos g — Cop — Kb (28)
All angles shall be considered small therefore permitting linearization. Therefore, for

small angles of ¢, sin¢ = 0 and cos ¢ =~ 1. The moments about O are linearized:

XM, =]¢<i5 =mgH¢_FCH_Ct¢_Kt¢ (29)

As the equation of motion is now a second order, linear, non-homogeneous
differential equation its solution can be determined by finding the sum of the

homogeneous solution and the particular solution [15].
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Note that the centripetal force is expressed using the standard relation, where m is

mass, v is speed, and r is radius of curvature:

mu?

F. = 30
c="% (30)
The solution to ¢ as a function of time is assumed to take the general form [15]:

¢(t) = d(On + () (31

¢ /
\/’“’Z‘
/ ¥y mg

by
=
5

FIGURE 7. Free-body diagram of solid body at roll angle ¢. The body is supported by a
massless support with a rotary spring and damper and acted upon by the centripetal force
and its own weight.

First the homogeneous solution will be determined. Terms are substituted, collected, and

placed into standard form using equation 48 [15]:
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¢+&¢+w¢=0 (32)
Jo J¢

Therefore, the roots of the characteristic equation to the standardized linear homogeneous

differential equation are:

2
Y J(s) _4<Kt—]_;ngH> )

The roots of the characteristic equation can assume one of three scenarios: two
distinct real roots, two double roots, or a complex conjugate pair. The third scenario,
complex conjugate pair, represents oscillatory motion and most accurately reflects the
motion seen in real-world applications such as a ground vehicle. Therefore, it is assumed
that the body’s response will be oscillatory and this motion will be enforced in the
model’s solution. In order to enforce oscillatory motion, the discriminant must be
negative. In the case of a complex conjugate pair, the solution to the homogeneous
differential equation, using standard notation, assumes the form [15]:

¢(t)y = e % (cq cosnt + ¢, sinnt) (34)

Angles ¢ and 7 are defined in terms of the characteristic equation [15] with:

1
o= Eal (35)
and:
1
n= E,/Ll.az — a12 (36)
where:
t (37)
aq =—
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and a, is:

K, —mgH
Jo

a, = 4 (38)

With o, 1, a4, and a, defined, the homogeneous portion of the general solution is
known. The particular portion of the general solution is found using the centripetal force.
The product of F; and H is constant and therefore a polynomial of degree zero. The
particular solution can be found using the method of undetermined coefficients by

choosing a degree-zero polynomial, and substituting into equation 32 [15]. This yields:

FcHJ g
(O =~ (39)
After substituting equations 34 and 39 into equation 31, the general solution is:
FcH
¢(t) = e (¢, cosnt + ¢, sinnt) — ﬁ (40)

Initial conditions must be applied to solve for ¢; and c,. For the two initial conditions we
assume zero initial angular velocity and a very small initial angle, ¢:
$(0) = & ¢(0) =0 (41)

It is reasonable to assume angular velocity is zero at t = 0 as motion has yet to
occur. However, if the roll angle itself is also zero then the solution will be undefined
and so therefore the roll angle must have some initial value which is assumed. This has
the effect of initiating motion of the model by a qualitatively small angle. Were the roll
angle equal to zero the model becomes unable to determine which direction the motion
should initiate and therefore is undefined. In a real world application, this is experienced
as a locking point, wherein the system or device cannot move one way or the other and so

becomes locked into position.
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With the initial conditions defined, ¢; and ¢, can be found by first substituting &

into equation 61:

FcHJg

p0)=¢e= ¢ " K —mgH

(42)

Constant c, is found by differentiating equation 61 with respect to time and substituting
equation 63 for the initial angular velocity:

45(0) = 0=o0c; —1nc; (43)
Therefore, equation 64 can be rearranged to define ¢, and ¢, can be expressed in terms
of cy:

FcHJ a
cpL=¢&+ m, Cy = Ecl (44)

It should be noted that /4 is the rotational inertia of the body in the roll plane along the x-
axis. As the body’s LCS is attached to the track for model simplification, the rotational
inertia must therefore be offset accordingly. This is most simply determined via the

parallel axis theorem:

(45)

L2 s (h+L3>2
Jo =13 2

4.10. Roll Velocity

The roll velocity as a function of time is readily determined from the main roll
angle equation. To find the roll velocity, the first derivative with respect to time is taken
with all terms retaining their previously stated definitions:

d(t) = e ((con cosnt — ¢y sinnt) — o(cy cosnt — ¢, sinnt)) (46)

As the roll velocity is calculated as a function of time, it is calculated using the existing

time increments.
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3.13. Roll Acceleration

Similar to the roll velocity, the roll acceleration is readily determined by taking
the second derivative with respect to time of the roll equation with all terms retaining

their previously stated definitions:

() = e %(a%(cy cosnt + ¢y sinnt) — n?(cq cosnt + ¢, sinnt) 47)
— 20m(c, cosnt + ¢, sinnt))

Again, like the roll angle and roll velocity, the roll acceleration is found by using the
existing time increments.

3.14. Yaw Velocity

The same limitations of determining the yaw angle remain with the yaw velocity.
The yaw velocity will only exist so long as the body is yawing, therefore within zone 1
the yaw velocity is zero:
1 (ipn) = 0 (48)
Within zones 2 and 3 the case is different as the yaw velocity is not equal to zero. For
zones 2 and 3, a general form of the yaw velocity 1/')2,3 (t) can be obtained by taking the

first derivative of the general yaw angle equation [6] with respect to time:

kq(s(@) = 50)($(D) = o) — ko(s(D) = s1)($(D) = $1)

So — 51

l,i’z.1,2.2,3(t) =

(56 = 502 = 50 = 50)?) G50 = 52

(s0 = 51)?

=5 (o =51 = (49)

Within equation 49, k, and k,are the initial and final curvatures, respectively, within the

associated sub-zones and zones. The initial and final arc lengths, and their associated

speeds, are represented as Sy, S1, Sg, and $;. The arc length and arc length speed at any
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given node are represented as s(i) and s(i). The arc length speed $(i) at a given node
within the zones 2 or 3 can be simply determined by the quotient of the arc length s(i) at

that node divided by the associated time increment t(i):

32.1,2.2,3 @)= ig—g (50)

The initial yaw velocity in sub-zone 2.1 is initialized as the final yaw velocity from zone
1, which is zero. The initial yaw velocity of sub-zone 2.2 is initialized as the final yaw
velocity from sub-zone 2.1. Finally, the initial yaw velocity of zone 3 is initialized as the
final yaw velocity from sub-zone 2.2. With the yaw velocities for zone 3 now defined,
the yaw velocity at all nodes for all 3 zones is obtained.

3.15. Conclusions

The mathematical model used to simulate a simplified body with a gyroscopic
stabilizer implements the use of a preprocessor that feeds input data into a series of
subsequent processors. The preprocessor determines all of the input motion based upon
assumed geometry, speed, and spatial positioning. The calculations performed by the
preprocessor are determined by the assumptions of the general model, and the geometric
design of the body and track. The preprocessor’s output is compiled into a data array that

is then used as the input for the body and gyroscopic processors to calculate their

respective data outputs.

31

www.manharaa.com



CHAPTER 4
MAIN BODY EQUATIONS OF MOTION
Once the output data are calculated and prepared by the preprocessor, they are
used as input for the body equations of motion. Through the equations of motion the
moments induced upon the body by its motion along the track can be determined. Note
that the body’s equations of motion do not model the moments induced by the gyroscope.

4.1. Equations of Motion and Moments

The dynamic equations of motion for a single solid body defined in three

dimensional space may be represented as [14]:

Mgr Mgy R] FA,R] FQ,R]
.| = 1
Mor mee] [G) Fapo * Foe D

The spatial equations of motion are merely a more general application of the
second law of motion. The F, terms represent the applied forces on the body, and as
there are no applied forces yet in the model, these terms are zero. The F;, terms represent
the quadratic forces arising from the body’s motion, and these are the terms of interest as
they are the forces induced by the body in each of its degrees of freedom.

4.2. Transformation Matrices

To avoid the transformations involved with using a trajectory coordinate system

[8], the current model uses an LCS that is attached directly to the track and the body
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offset through its moments of inertia. Figure 8 shows the body in relation to the track,

the GCS, and its LCS.

FIGURE 8. Diagram showing the body traversing the defined path with its local
coordinate system in relation to the global coordinate system.

As the LCS moves along the track its mutually perpendicular axes remain tangent
to, and perpendicular to, the track at all times. In this way the LCS follows the track’s
path exactly, and as the body is aligned within the LCS, the track’s geometry is
communicated to the body. If this method were not employed, the problem would
become of how to communicate the track geometry to the body, the body motion arising
from that track geometry, and then that body motion back to the GCS? While using an
offset through the body’s moment of inertia requires modifying the inertia tensor from

what it would otherwise be, it is nonetheless highly effective and avoids otherwise

lengthy calculations.
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The current arrangement therefore requires only two coordinate systems and a
single transformation as opposed to three coordinate systems and two transformations [8].
In order to overcome the distance of the centroid positioned over the LCS origin, the
inertia tensor is adjusted using the parallel axis theorem. This allows the LCS origin to
remain attached to the track but for the body to be positioned above, and still move
relative to, the track.

The current model uses the transformation sequence Z-X-Y with positive axes
defined by the right hand rule as depicted in Figure 3. The transformation matrix of the
LCS to the GCS therefore becomes:

cosy —cos¢gsiny  singsiny
A=|siny cos¢sinyy —cos¢siny (52)
0 sin ¢ cos ¢

The first derivative of the transformation matrix with respect to time is found by

differentiating A with respect to time, t:
A=
—sinyP sing;sinyp P —cosgpcosPy cospsiniy ¢ + cosysin P (53)

cosyPyP —cosysing ¢ —cospsinyy singsiny P — cos P cosy ¢
0 cos ¢ ¢ —sing ¢

4.3. Unit Vector Transformation

The unit vector transformation is the transformation of the unit vectors from the
LCS to the GCS. The unit vector transformation follows the same sequence of rotations
as the transformation matrix. The unit vector along the z1 axis is taken with respect to Z

and 1s therefore unity. The unit vector along the x1 axis is found by transforming x1 by
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Z. Finally, the unit vector along the yl1 axis is found by transforming y1 through z and x

respectively. When all three unit vectors are summed they become:
0 cosyp —cosgsiny
G= 1[G Gi Gg]= [0 siny cos¢cosy (54)
1 0 sin¢
The unit vector transformation matrix can be defined with respect to the body
coordinate system by pre-multiplying with the transpose of the transformation matrix
[14]:
G=A"G (55)
The derivative of the unit vector transformation with respect to the LCS is found

by differentiating G with respect to time [14]:

G =
0 0 0
cospp 0 2 cos ¢ sin ¢ ¢ — 2 cos ¢ sin ¢ ¢ sin® P — 2 cos ¢ sin ¢ ¢ cos2 P
—singp 0 ¢cos?d— ¢ cos?psin?yh — ¢ cos? ¢ cos? P + ¢ cos? P sin? ¢ + ¢ sin? ¢ sin® P — ¢ sin? ¢

(56)

4.4. Position Vector

The location of the body’s centroid with respect to the LCS’ origin is depicted in
Figure 9. As the centroid does not move relative to the LCS origin in the X direction, the
local x1 component is always equal to 0. All angles are assumed to be small and
therefore the displacement of the centroid is linear with respect to the LCS origin.

Using existing notation [14] the position vector within the LCS is found through

elementary trigonometric relations, and with small angles is linearized:

a=[o ¢<h+§) h+§T (57)
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z1

FIGURE 9. Diagram of geometry used to determine the body’s position vector.

4.5. Angular Velocities

The Euler angles can be expressed as a single vector giving the orientation of the
body at a single point [14]. For the model under consideration, pitch is neglected, and
therefore is always equal to zero. If @ is the total orientation of the body, with ¢ being
roll and i being yaw, the orientation thus becomes:

¢
G')Body = [0] (58)
Y

The angular velocity can be expressed by taking the first derivative of the orientation

vector with respect to time:
. _ iy -
GBody - -QBody - [¢ 0 1/}] (59)
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The angular velocity can be redefined in terms of the LCS by pre-multiplying by the LCS
defined unit vector matrix [14]:

ﬁBody = GO (60)

4.6. Inertia Tensor

The inertia tensor of the body within the LCS can be expressed as a symmetric
matrix composed of its constituent elements, the moments of inertia [14]:
[ by b
Igp = ‘:xy i.yy ‘:yz (61)
lyz lyz lzz
As the LCS origin is offset from the body’s centroid it is necessary to ensure that
the inertia tensor is offset accordingly. This is accomplished by determining the inertial
components respectively at the centroid and then using the parallel axis theorem to
account for the origin offset. The variable descriptions are the same as applied in prior
relations and diagrams. The subscript CG denotes that the component is taken at the
centroid with all references being made within the LCS. The bar over the respective

components denotes the distance from the LCS origin to the body centroid using standard

notation. The moment of inertia along the x1 axis:

m
e = 75 (122 +132) + m(7? + 72) (62)
The moment of inertia along the y1 axis:
m
iyy = E(le + L3%) + m(x? + z2) (63)
The moment of inertia along the z1 axis taken at the centroid:
(64)

m
iy, = E(L12 + L2%) + m(x? + y?)
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The centroidal moments of inertia along the cross axes are zero and are offset from the
origin by multiplying the mass by the centroidal location from the respective axis. The

xyl moment of inertia is:

lyy = —MXY (65)
The xz1 moment of inertia is:

Iy, = —MXZ (66)
The yz1 moment of inertia is:

ly, = —myz (67)

4.7. Quadratic Forces

The quadratic forces for a solid body’s motion consist of the linear forces and the

rotational forces [14]:

FQ,R]

FQ = FQ‘Q

(68)

As this thesis is concerned primarily with the rotational quadratic forces, only these will
be considered. The rotational quadratic forces can be expressed as the product of the
transpose of the unit vector matrix in terms of the LCS, and the cross-product of the

inertia tensor, the angular velocity, and the unit vector transformation [ 14]:
Foo = —GT [ﬁBody X (IpgQpoay) + 79959] (69)

4.8. Conclusions

As the body model consists of only the body, the quadratic forces are only those
in play and therefore only those which are considered. Further, this thesis is concerned
chiefly with the moments induced by the body and accordingly only the rotational

quadratic forces are considered as these are the very moments under consideration. With
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the body moments determined, it is now necessary to determine the moments induced by
the addition of a gyroscope. With the gyroscopic moments known, the original body

moments can be augmented and the difference between the two determined.
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CHAPTER 5
GYROSCOPIC EQUATIONS
The gyroscope considered in this model is a simple gyroscope consisting of a
single rotor rotating on a massless shaft. As shown in FIGURE 10 and FIGURE 11 the
gyroscope’s centroid is coincident with the body’s centroid and there is no relative
movement between the two. Therefore the yaw and roll angles experienced by the body
are the same as those experienced by the gyroscope by virtue of their fixed relative

positions.

LGyro
L1

RGyro

L3

L2

FIGURE 10. Diagram of body showing relative spatial position of gyroscope along with
basic gyroscopic geometry. Notice that the gyroscope consists of a single cylindrical
rotor along a massless shatft.
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L1

I-Gyro

L2

FIGURE 11. Diagram of gyroscope with its associated geometric parameters as viewed
orthogonally.

FIGURE 12. Rotational axes of gyroscope.
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The positive directions of rotation along the gyroscope’s rotational axes are the
same as those of the body and shown in FIGURE 12. While the yaw and roll angles of
the body and gyroscope are identical, the pitch angle is not. Unlike the body, the
gyroscope is rotating and therefore has a positive spin and non-zero 6. To avoid
confusion with the generalized 6, the gyroscope’s pitch is labeled with a G and is 8;. As
the gyroscope follows the right hand rule with constant angular velocity in spin, nutation
and precession will occur depending upon which rotational axis is active. For example,
with a constant spin, a motion along ¥ will cause a corresponding motion along ¢, and
vice versa. The relative directions of the rotations are dependent upon the direction of the
spin, and for this model, it is critical to note that the spin must be negative. If this is not
the case then positive inputs will generate positive outputs and the system will have a
positive feedback. A negative spin will create a negative feedback system and therefore
ameliorate the input motions.

With a negative spin, as the gyroscope begins to yaw counterclockwise
through negotiation of a radial curve, then it will also begin to roll counterclockwise into
the center of curvature and in opposition to its centripetal motion. This is the opposite
motion predicted with a positive spin gyroscope whereas the body yaws
counterclockwise a clockwise roll ensues. Therefore, the moments induced by a
gyroscope with negative spin are contrary to the moments induced on the body by its
motion. Analytically, the moments induced by the gyroscope in the three mutually

perpendicular directions can be expressed in terms of the kinetic energy of the gyroscope

[14].
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The roll moment My can be expressed as [14]:

M. - d (dT aT 0
¢~ dt\ap) ¢ (70)
The pitch moment My, can be expressed as [14]:
M. = d (0T aT -
% = dt\og,) 06 1)

Finally, the yaw moment My, can be expressed as [14]:

M. - d (oT aT 72)
Y dt\oy) oy
With these expressions is it now possible to determine the moments induced by the

gyroscope and thereby determine its effect on the body.

5.1. Angular Velocity and Transformations

The angular velocity of the gyroscope in terms of the LCS can be expressed as the
product of the LCS unit vector transformation matrix and the first time derivative of the
orientation vector:

ﬁayro = G]'/Gyro (73)

The orientation vector ¥y, and the associated angular velocity Yy, use the

same generalized angles as the body with the exception of pitch due to the gyroscope’s

spin:
YGyro = [ 6c o], Yeyro = [1,[’ éG ¢]T (74)
The unit vector transformation matrix in terms of the LCS remains the same as
that of the body:
Goyro = ATG (75)
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Which expands into:

G_Gyro
0  cos?y +sin?y 0 (76)
= |sin¢ 0 cos? ¢ cos? P + cos? ¢ sin? Y + sin? ¢
cos ¢ 0 cos ¢ sin ¢ — cos ¢ sin ¢ sin? 1 — cos ¢ sin ¢ cos? P

5.2. Kinetic Energy

To obtain the moments induced by the gyroscope, one can use the gyroscope’s

kinetic energy. The kinetic energy of the gyroscope is expressed as [14]:

1_ T _
T = EQGyro IGGGyTO-QGyro (77)

As the gyroscope is symmetric about its y-axis, the mass moment along the x-axis is

equal to that along the z-axis, with all cross axes being equal to zero:

iy, 0 O
166 6yr0 = g 13(,)3, 0 (78)
lxx

After substitution and expansion of terms, the kinetic energy of the gyroscope is

obtained:

¢ cos B; — 1 cos ¢ sin 06>

T =iy ((ﬁcoseg—lﬁcoscpsineg)( >

¢ + 1 sin ¢> (79)

+(96 +1,l)sin¢)< >

¢ sin @, + 1 cos ¢ cos BG>

— izz(cﬁ sin 6; +1/)cosq.’>cos BG)< >

With the kinetic energy now known, the gyroscopic moments can be evaluated.
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5.3. Moment Along Phi

The moment along ¢ can be determined from the kinetic energy of the gyroscope
[14]. Unlike the case for the body, the gyroscope has a nonzero 8 due to its spin and
therefore is included in the transformation and derived relations. The moment My be
expressed as the difference shown in equation 109. First the partial derivative of the

kinetic energy with respect to ¢ is evaluated:
aT

% = i (Y?cos ¢ sin ¢ cos? B; + P sin ¢ sin 6, cos O + O cos )
(80)

— i,,(1? cos ¢ sin ¢ cos? O; + P sin ¢ sin §; cos 6;;)
Next, the partial derivative with respect to the roll velocity is evaluated:

oT . .
— = (¢ cos? 6; —  cos ¢ cos O sin 6 )

0 (81)
+i,, (¢ sin? O + v cos ¢ cos O sin 6;;)

And finally when differentiated with respect to time:

d (0T A ,
a<£> = _ixxﬁl,qﬁ + lzz.32,¢ (82)

Where the first term B 4 is:

Bry = PO cos? O — P cos? 6 — B sin? §; + 1 cos O sin b
(83)
+ 26, cos 6 sin 6
Differentiating with respect to time causes higher order terms in Y to appear as
the yaw acceleration. However, as the yaw velocity is constant, its acceleration is equal
to zero and can therefore be neglected. Therefore, the second term ﬁ2,¢' is:
Bag = 90 cos? g — § cos? 6; — 0 sin® 6; + 2¢0;; cos O sin b (84)
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5.4. Moment Along Psi

The moment My, can be determined similarly to that of ¢ [14]. As the kinetic energy

does not contain any yaw terms, the partial derivative of the gyroscopic kinetic energy

with respect to the yaw is zero:

oT

oy =0 (85)

However, the kinetic energy does contain yaw velocity terms and therefore the

partial derivative with respect to the yaw velocity is not zero:

aT . . . .
— = i (Y — ¢ cos ¢ cos O sin O — 1 cos? ¢ cos? O + 6 sin )

i (86)

+ iy, (1 cos? ¢ cos? 6, + ¢ cos ¢ cos B sin O;)

When the partial derivative is taken with respect to time it becomes:

d (0T ) .. ,
i (@) = LBy — 2By (87)
Again, neglecting higher order spin and yaw terms, the first term ,81,1,,' is:
Biy' = O cos ¢ — ¢ cos P cos? b + O cos ¢ sin? 6
— ¢ cos ¢ cos B sin B; + 21p¢ cos ¢ sin ¢ cos? O (83)
+ 216, cos B sin B cos? ¢ + ¢ cos B sin ¢ sin O
And the second term f3," is:
Bay' = ¢O¢ cos psin® O; — ¢B; cos ¢ cos? B, — ¢ cos ¢ cos O sin O
+ 21 cos ¢ sin ¢ cos? O + 216, cos B sin O cos? ¢ (39)

+ ¢? cos O sin ¢ sin 6
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5.6. Moment Along Theta

The moment Mg, is obtained in the same manner as both My and My, [14]. The

partial derivative of the kinetic energy with respect to 6 is:

oT

E = _ixx.Bl,HG + izz.BZ,BG (90)

Where the first term B g, is:

Pro, = $? cosBgsinb; + 2¢y cos ¢ cos? O — Py cos P
2

— 12 cos 8 sin O cos? ¢

And the second term f3; g, is:

oo, = C0s 0 sinb; ¢p? + 2¢ cos ¢ cos? O — Py cos ¢
92)
— )2 cos O sin B; cos? ¢
The partial derivative of the gyroscope’s kinetic energy with respect to the pitch

velocity is:

oT . .
—— = iy (0 +Psing) (93)

26
When differentiated with respect to time and neglecting higher order terms, equation 93

becomes:

% (55) = i cos) o)
dt \ a6

5.7. Gyroscopic Theta

As shown in the gyroscopic derivations and associated equations, the sine and
cosine of the rotor angle 8, frequently appear. As the rotor is spinning its angle cannot

be assumed small, and therefore its sine and cosine terms cannot be linearized.
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Accordingly this necessitates that the rotor’s angle 6, be calculated. Fortunately, as the
gyroscope possesses a constant spin, its total angular rotation at a given point is readily
determined.

The angle swept by the rotor can be determined by multiplying the rotor’s
rotational speed by the time increment at that point, where 6; is constant:

05(i) = O - t(i) (95)

Within zone 1, the rotor angle at the first node is initialized with an angle of 0 radians.
Subsequent angles at respective nodes are calculated by multiplying the rotor speed and
the nodal time increment. Zone 2 is managed in a similar fashion to previously
developed nodal discretization calculations. The first node of sub-zone 2.1 is initialized
as the last node of zone 1. Subsequent nodes within sub-zone 2.1 are determined
recursively by multiplying the rotor speed by the time increment at the respective node.
Sub-zone 2.2 is initialized by the last node of sub-zone 2.1, and subsequent nodes within
zone 2.2 can be determined by the product of the rotor speed and the time increment at
the respective node. Finally, the rotor’s angular displacement in zone 3 is determined
much the same as with zones 1 and 2. The first node of zone 3 is initialized as the last
node of sub-zone 2.2. Subsequent nodes are determined from the product of the rotor
speed and the respective time increment. With all three zones defined, the entire angular
displacement of the rotor can therefore be determined for the entirety of the body’s travel.

5.8. Conclusions

The moments induced by the gyroscopic stabilizer can be obtained via its kinetic
energy. The kinetic energy of the gyroscope is obtained using the classic expression with

the moment of inertia symmetric about the Y spin axis. As the gyroscope experiences the
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same yaw and roll as that of the body, these angles are identical. However, the gyroscope
has a constant spin and therefore has a constant pitch velocity unlike the body. The
gyroscope must have a negative spin in order to force a negative feedback by the body’s
left swerving maneuver. With the gyroscopic moments now obtained, the original body

moments from the main processor can be augmented and a performance assessment

made.
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CHAPTER 6
SIMULATION RESULTS
Both the body’s moments and the gyroscope’s moments were calculated
independently from the same input data. As the gyroscope applies moments to the body,
its performance can be determined by simply summing the two results per the original
body equations of motion.

6.1. Combined Results

With the moments on the body known, and the moments induced by the
gyroscope known, it is possible to find the combined motion of the body and gyroscope.
If the body moments are those due to the quadratic forces:

(Me)Body = FQ,9 (96)
And the gyroscope’s forces are those which are applied to the body:
Mq
(Me)cyro = Fyp = MGG 7
My,
Then the resultant motion can be expressed as the sum of the two:

(MG)Combined = FQ,9 + FA,G (98)

6.2. Simulation Inputs

As stated in this thesis, the body is simulated as a rectangular prism creating a
highly simplified model of a tractor trailer. To further this the body is modeled using

data from a 1988 Pines 48ft trailer [12] as shown Table 3. The trailer is assumed to be
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traveling at 55 mph, and assumed to take 5 seconds to make a single lane to lane
swerving maneuver on a Californian freeway. The maneuver time is arbitrarily selected
to provide a reasonable estimate of actual vehicle maneuver times. The gyroscope is
modeled as a single rotating disk whose axis is parallel to the ground with a massless
spindle. All units are standardized to inches, seconds, slugs, and radians for distance,
time, mass, and angle respectively.

The gyroscope’s material is selected as depleted uranium in order to provide for a
realistic material which has high density, is easily obtained, and can be used structurally.
The gyroscope’s final geometry is selected based on what could reasonably be expected
to be placed into an actual application while maintaining a high aspect ratio in order to
increase its moments of inertia along the roll and yaw axes.

The nodal quantity was selected to provide an acceptable resolution of the track
geometry while maintaining a reasonable run time on a quad-core PC. Increased nodes
increase the track geometry resolution at the expense of additional computational time.

6.3. Simulation Results

Figure 13 displays the roll moment, My, with respect to time for both the body
and the combined resultant of the body with the gyroscope as the body travels the radial
curve. As can be seen in the figure, the body’s moments and the resultant moments are
nearly indistinguishable from one another. This is due to the relative magnitudes of the
moments between the body and the gyroscope. On average the body’s moments have an
order or magnitude of 10*! in-1b while the gyroscope’s moments have an average order of
magnitude of 10'7 in-Ib. When the two moments are summed to obtain the resultant, the

body moments dominate, and therefore the final motion is nearly identical to what it was
51

www.manharaa.com




initially. Multiple runs of the simulation with varying gyroscopic parameters generate
similar results in that the body dominates the gyroscope. This is most plausibly
explained by the relative magnitudes of the two body’s properties.

While the gyroscope has adequate mass compared to the body, the body’s
geometry has very large moments of inertia and therefore the body’s motion will
dominate that of the gyroscope. Figure 14 displays the roll moments for the body and the
gyroscope on separate axes for comparison of topography. While the magnitudes imply
that the body’s motion will dominate, the topographies show that the gyroscope’s general
motion is indeed responding to that of the body’s. In many instances one can see that
peaks and valleys in the body’s moments are responded to with opposite moments of the
gyroscope. This is particularly apparent as the body exists the radial curve where a large
negative moment is countered with an opposing positive moment of the gyroscope. This
suggests that the gyroscope is producing a motion dampening effect, but that its
magnitude does not have a significant enough effect when confronted by the body.

Figure 15 displays the pitch moment My with respect to time for both the body
and the resultant of the body and gyroscope. Again, the outcome is very similar to that
seen with the body and gyroscope for My. The body’s motion dominates that of the
gyroscope and so the body does not effectively see the gyroscopic effects. Figure 16
shows the body and the resultant yaw moments My,. As is the case for both My, and M,
one can see that the body moments dominate the gyroscopic moments and so the resultant

is predominantly the motion of the body. However, unlike My and Mg, the yaw moments

do not exhibit as large a difference in magnitude and this is shown in Figure 17. While
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TABLE 3. Simulation Input

Model Input Value
m 984.876 slug
h 72.1 in
L1 565 in
L2 102.5 in
L3 114.5 in
Main Body Properties
C, 6 X 10° in-Ib-sec
K, 1 X 108 in-lb
€ 7.731 x 1073 rad
v 968 in/s
g 386.088 in/s?
Lgyro 6 in
Rgyro 48 in
Gyroscope Properties 2.14468277435E-2 slug/in’
g (Density, depleted uranium)
0 -10000 RPM
t 5 sec
R 1200 in
Stane 144 in
Environmental Properties Zone 1 Nodal Quantity, bN 28
Zone 2 Nodal Quantity, rN 26
Zone 3 Nodal Quantity, tN 36
Zone 1 Distance 1000 in
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«10" Moment M, Initial and Resultant
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FIGURE 13. Roll moment My with respect to time of the body without the gyroscopic
stabilizer, and of the body after addition of the gyroscopic stabilizer. The body’s
response dominates that of the gyroscope causing the resultant to be nearly identical to
that of the body’s response.
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Moment, M,: Body and Gyroscope x10
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FIGURE 14. Roll moment My of the body and of the gyroscope on separate axes. The
magnitude of the body’s moments are many orders of magnitude larger than that of the
gyroscope and so dominate in the resultant. However the gyroscope’s motion is
responding to that of the body with many peaks of the body’s motion plot coinciding with

valleys of the gyroscope’s plot.
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x10" Moment M,: Initial and Resultant
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FIGURE 15. Pitch moment My with respect to time of the body before and after the
addition of the gyroscope. Like the other axes, the body’s motion dominates that of the
gyroscope and so the resultant is predominantly that of the body.
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x 10 Moment M,: Initial and Resultant
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FIGURE 16. Total yaw moment of the body and the combined body-gyroscope resultant.
As with the other axes the body’s motion dominates that of the gyroscope and so the
resultant is predominantly that of the body making the resultant nearly indistinguisable
from the body alone.
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x10%2 Moment M,: Resultant and Gyroscope x10%
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FIGURE 17. Yaw moment of the body resultant and the gyroscope on separate axes.
The body’s moments continue to dominate those of the gyroscope but with less of a
difference. The gyroscope starts with an initial moment due to the small angle
displacement from the roll initial conditions.
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the ¢ and @ directions see differences in magnitude of greater than 20 times, the
difference in magnitude between the body and resultant moments is only 10 times.Note in
Figure 17 that the gyroscope begin with a small initial moment due to the initial angular
displacement of the body in ¢». Similar to Figure 15, one sees multiple instances where a
peak or valley of the body’s My, has an opposite peak or valley from the gyroscope.
Again, this suggests that the gyroscope is indeed responding oppositely to the body’s
input moments, but that the shear maganitude of difference between the two eliminates
any effect from the gyroscope.

6.4. Simulation Conclusion

The simulation data shows that the body’s moments will dominate those of the
gyroscope. This effectively negates any effects that the gyroscope would potentially
have on the body and therefore reduces any stabilizing effects. However, in the case of
the yaw moments, there is a slight difference from the trend. The difference in

magnitude between the body and gyroscope is nearly half that as seen for the other axes.
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CHAPTER 7
CONCLUSION AND FUTURE DIRECTIONS

The problem presented in this thesis was to assess the performance of a simplified
solid body equipped with a passive gyroscopic stabilizer using a simplified computational
spatial model. The model was successfully able to calculate the body’s dynamic
performance via its induced moments both before and after the addition of a gyroscopic
stabilizer. Additionally, the model’s derivation has been presented in a simplified form
and to assist in maintainability and usability. However, despite the model’s successful
calculations, it was unable to confirm that a fixed passive gyroscopic stabilizer has a
measureable effect on the body’s motion. The greatest cause of this is due to the relative
magnitudes between the moments of inertia of the body and gyroscope, respectively. To
this end, the body was of such sufficiently large geometry that any induced moments
provided by the gyroscope were overwhelmingly dominated by the body and therefore
had minimal effect on the resultant.

However, despite this, the model still retains utility in providing a qualitatively
accessible computational model for simple bodies, with potential application in other
studies. While the magnitude of a tractor-trailer’s inertia tensor appears to make a fixed
passive gyroscopic stabilizer an inappropriate choice, this may not be the case for a
smaller body. It is entirely conceivable that a small body, on the order of a personal

vehicle, may be well suited for passive gyroscopic stabilization depending on the desired
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final performance criteria. Further, due to the modular nature of the computational
model, it is possible to remove individual functions and substitute new ones thereby
expanding its features or altering them. The gyroscopic processor, for example, requires
input data from a source that meets its basic input requirements. With appropriate input
data provided, the module could be used to compute gyroscopic moments for a multitude
of differently shaped bodies. The other computational modules can be similarly altered
for more advanced investigations.

Potential future direction of the current model is envisaged as an expansion of the
gyroscopic model and refinement of the preprocessor. Regarding the gyroscopic model,
it would be desirable to view what an actively controlled gyroscopic stabilizer’s
performance might be. An actively controlled stabilizer would allow the gyroscope to
adapt its roll, yaw, and spin in response to those of the body. A dual acting stabilizer is
an additional possibility with the two gyroscopes acting in unison upon the body.
Concerning the preprocessor, it would be desirable, and likely to yield greater insight, if
general path geometry could be input rather than the static path defined in Figure 5.
Therefore, while the results of the current system configuration do not support the use of
a fixed passive gyroscopic stabilizer for a tractor-trailer, an alternative configuration may

yield very different results, and this would be the recommended next step for research.
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APPENDIX A

MAIN PROCESSOR MATLAB SOURCE CODE
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Ghhkhkhkhkhhhkhhhhhdhhhhhhhdhhhhdhhhhhhhdhhhhdhhhhhhhdhhhhhhhdhhhhdhhhhhhhdhhhhdhhhhhhhdk

$ManPro: Main Processor, V1
%**************************************************************************
$This is the main script file to calculate the body moments and
%gyroscopic moments. PrePro is first run in order to prepare all the data
$for calculation. Once prepared, ManPro calculates the moments for each
$node iteratively. PostPro can be run, or not, as it simply formats plots
$for easy review.

o°

o\

Body moments are calculated based on the main equations of motion (EOM) .
The equations of motion calculate moments at a single instance, therefore
%it is necessary to perform calculations at each node to get a history of
$the body's motion. Output of each count is dumped to QV_THETA array which
%$is then used for analysis. QV_THETA contains the history of the body
$moving along track. Each count creates a matrix from the EOM, these could
$be used for analysis is so desired with minor adjustments to the main body
%$loop.

0P

©

o°

PARENT FUNCTION: None.

o° o

hokkkkkkkhkkkkkkkkkkkkkkkkkkkkk ok ok kkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk k%
VARIABLE DEFINITIONS

LR RS S SRS SRR RS RS E SRR SRR E R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

o° o

o°

Main Variables within ManPro (Main Processor)

$psil_i Psi angle of main body w/o gyroscope at a single node
$phil i Phi angle of main body w/o gyroscope at a single node
$thetal i Theta angle of main body w/o gyroscope at a single node
$dphil 1 dPhi/dt of main body w/o gyroscope at a single node
$dpsil_ 1 dPsi/dt of main body w/o gyroscope at a single node
%$genDTheta Orientation vector theta, theta (euler angle) = 0,

% no pitch.

$A1 Main body euler transformation

%dAl First time derivative of euler transformation

$I1_bar thetatheta Inertia tensor in LCS

$Glbar Unit vector euler transformation

%dGlbar Frist time derivative of unit vector euler

% transformation

$M Mass matrix

$omegaBarTilda Angular velocity matrix, in LCS and skew symmetric
$omegaBar Angular velocity matrix, in LCS, not skew symmetric
%Qv_theta Quadratic angualr forces

$QV_THETA Transpose of Qv _theta, for formatting into other

% functions

%$GYRO Gyroscopic processor and associated outputs
$RESULTANT Body quadratic mmoments + gyroscopic moments, total

% moments on body w/ gyroscope

%$DA Output array of PrePro (pre-processor) function
%bNodes Nodes in Zone 1, boundary

%tNodes Nodes in Zone 3, tangent

$rNodes Nodes in Zones 2.1, 2.2, radial

$H_CG Location of main body CG

%L1 Body length

L2 Body width

$L3 Body height, above rails, excluding suspension

%$h Suspension height; rails
%**************************************************************************

%$GLOBAL VARIABLES & DEFINITIONS

EE R RS SRS S SRR E SRR R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

o° o

0P

Global variables are used to pass data back and forth between functions.

o°

NOTE: Variables which contain the C appended to them are the corrected
arrays. In order to avoid overlapping and double-counting nodes, the
loop outputs of each zone are corrected and then summed to have the
total nodes input by the user. If not, the nodes will overlap at

each terminus, as that terminus is the start of a new zone, causing
the overlap.

o° o

o° o

o° o

o°

°
5

bN rN tN Zone nodal counts
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% X x track coordinates
% v y track coordinates
% Z z track coordinates
% s Arc length
% ch Curvature
% m Mass
% n node
% psi Psi, yaw angle
% t Time
% phi Phi, roll angle
% dphi dPhi/dt, roll velocity
% lambdal,C, J, L, m_h Intermediary roll calculations
% dpsi dPsi/dt, yaw velocity
% ddphi d/dt (dPhi/dt), roll acceleration
% Mth Gyroscopic moments
thgy Gyroscopic theta with respect to time

o o

R R R R R R EEEE SRR EEEEE R R EEEEEEEEEEEEEEEEEREEEEREEREEEREEEREEEEREEEEEEEEEEEEEES]

o o o

global bN rN tN

global x1 x2 x3 x1C x2C x3C x2S

global yl1 y2 y3 ylC y2C y3C y2S

global zl z2 z3 z1C z2C z3C

global sl s1C s21 s21C s22 s22C s3 s2C s3C

global chl chlC ch2C ch3 ch3C ch21 ch22 ch21C ch22C m21 m22

global nl nlC n2 n2C n3 n3C

global psil psilC psi2l psi22 psi2lC psi22C psi3 psi3C psi2C

global tl tl1C t21 t21C t22 t22C t23 t23C t3

global phil philC phi2l phi21C phi22 phi22C phi2 phi2C phi3 phi3C

global dphil dphilC dphi2l dphi21C dphi22 dphi22C dphi2 dphi2C dphi3 dphi3C
global lambdal lambda2 C1 C2 J Ll L2 L3 H CG m h

global dpsil dpsi2l dpsi22 dpsi2 dpsilC dpsi2lC dpsi22C dpsi3 dpsi3C

global ddphil ddphilC ddphi2l ddphi21C ddphi22 ddphi22C ddphi2 ddphi2C ddphi3 ddphi3cC
global Mthl MthlC Mth21 Mth22 Mth2C Mth3 Mth3C

global thgyl thgylC thgy2C thgy2l thgy22 thgy3 thgy3C

5

clear all %Clear out all data

%

clc %Clear out workspace

°
5

disp('****Starting Simulationx*x*') ;
disp('--");

disp('--');

pause (1) ;

disp ('Running PrePro') ;

disp('--");

pause (1) ;

PrePro %Run pre-processor and get data matrix DA to feed rest of processor
disp ('PrePro Complete');

disp('--');

pause (1) ;

°
5

disp ('Running ManPro') ;
disp('--");

pause (1) ;

format long

°
5

%**************************************************************************
%$Body Processing
%**************************************************************************

°
5

for 1 = 1:1:numel(N) %begin counting per each node.
psil i = DA(i,6);
phil i = DA(i,4);
thetal i = DA(i,5);
dphil i = DA(i,10);
dpsil i = DA(1i,11);
genDThetal i = [dphil i; 0; dpsil i];
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Al(:,:,1) = altransform(psil i, phil i, thetal 1i);
dAl(:,:,1i) = aldottransform(psil i,phil i,dpsil i,dphil i) ;

I1_bar thetatheta(:,:,i) = Ilbar(m, phil i, H CG, L1, L2, L3);

Glbar(:,:,1i) = transpose(Al(:,:,1))*...
gltransform(psil_i, phil_i, thetal_i);

dGlbar(:,:,1i) = glbardot (phil i, psil i, dphil i);

M(:,:,1) = massl(m, Glbar(:,:,i), Il bar thetatheta(:,:,i),
Al(:,:,i), L1, L2, L3, h, phil i);

omegaBarTilda(:,:,1) = omegabar tilda(Al(:,:,1i),dAl(:,:,1));
omegaBar(:,:,1) = omegabar(Glbar(:,:,1i),genDThetal i) ;

Qv_theta(:,:,i) = -transpose(Glbar(:,:,i))*...
(cross (omegaBar(:,:,1), (I1_bar thetatheta(:,:,i)*...
omegaBar(:,:,1)))+I1_bar thetatheta(:,:,i)*...
dGlbar(:,:,1) *genDThetal 1i); %Calculate QV_theta matrix
QV_THETA = transpose(Qv_theta(:,:)); %Change to vertical array
end
%**************************************************************************

%Gyroscopic Processing

Sk e ok ok ke ok ok ko ok ok ke ok ok ke ok ok ko ok ok ok ok ok e ok ok ko ok ok ok ok ke ok ok ke ok ke ko ke ke k kK ko ke k ko k kK ok kK k ok
%Run gyroscopic moment calcualtions contained within gyroscopic function

o

%
disp ('Running GyroPro') ;

disp('--');
pause (1) ;
GYRO = GyroPro (bNodes, tNodes, rNodes, ixx gyro, iyy gyro, dtheta gyro);

disp ('GyroPro Complete');
disp('--");
pause (1) ;

o°

LR R RS SRS SRR RS RS E R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

o° o

o°

o°

Calculate combined moments of body and gyroscope. Resultant motion is
sum of body's moments and gyro's moments.

o° o

RESULTANT = QV_THETA + GYRO;

%
%**************************************************************************
%$Post Processing
%**************************************************************************
%Run post processing script which formats plots for review; optional, can
$comment out if desired and analyze nodal data in application of choice.

°
5

disp('ManPro Complete');

disp('--");

pause (1) ;

disp ('Running PostPro');

disp('--");

pause (1) ;

PostPro

disp ('PostPro Complete');

pause (1) ;

disp('--");

disp('--');

disp ('****Simulation Completex***!');
%**************************************************************************
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Ghhkhkhkhkhhhkhhhhhdhhhhhhhdhhhhdhhhhhhhdhhhhdhhhhhhhdhhhhhhhdhhhhdhhhhhhhdhhhhdhhhhhhhdk

$PrePro: Pre Procressor, V1
%**************************************************************************
%$This is the main script to process all of the inputs for the main motion
%equations. PrePro calculates the track nodes, nodal positions, time, and
%euler rotation angles. All track geometry is designed into the coordinate
$functions directly. Each of the below functions calculates the specific
$variable at the current node. For example, the third element in the X
%coordinate array is the X coordinate that belongs to node 3, and so on.

o°

o

NOTE: It is important that the order in which the functions are called
remains as-is, or are carefully rearracnged. Certain functions require
data that is calcualted from other functions. This data is in turn called
out as global variables to make it available globally.

o° o

o°

o°

PARENT FUNCTION: This script is called in ManPro

o° o

R R R X
VARIABLE DEFINITIONS

LR R RS SRS S SRR RS RS E R E R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

NOTE: All global variables are defined in the ManPro documentation.

o° o

o° o

SN Nodal count array of node numbers

%X X track coordinate array

%Y Y track coordinate array

%Z Z track coordinate array

$THETA Body pitch angle array

%S Arc length array

5T Time array

%CH Curvature array

$PSI Yaw angle array

$PHI Roll angle array

$DPHI Roll velocity array

$DDPHI Roll acceleration array

$DPSI Yaw velocity array

%$DA Preprocessed data matrix

%alpha Intermediary variable for radial calculations
$beta Intermediary variable for radial calculations
$zeta Intermediary variable for radial calculations
%**************************************************************************

format short

$Define global variables for use across functions

global bN rN tN

global x1 x2 x3 x1C x2C x3C x2S

global yl1 y2 y3 ylC y2C y3C y2S

global zl z2 z3 z1lC z2C z3C

global sl s1C s21 s21C s22 s22C s3 s2C s3C

global chl chlC ch2C ch3 ch3C ch2l ch22 ch21C ch22C m21 m22

global nl nlC n2 n2C n3 n3C

global psil psilC psi2l psi22 psi2lC psi22C psi3 psi3C psi2C

global tl t1C t21 t21C t22 t22C t23 t23C t3

global phil philC phi2l phi21C phi22 phi22C phi2 phi2C phi3 phi3C

global dphil dphilC dphi2l dphi21C dphi22 dphi22C dphi2 dphi2C dphi3 dphi3cC
global lambdal lambda2 C1 C2 J Ll L2 L3 H CG m h

global dpsil dpsi2l dpsi22 dpsi2 dpsilC dpsi2lC dpsi22C dpsi3 dpsi3C

global ddphil ddphilC ddphi2l ddphi21C ddphi22 ddphi22C ddphi2 ddphi2C ddphi3 ddphi3C
global Mthl MthilC Mth21 Mth22 Mth2C Mth3 Mth3C

°
5

disp ('Running VarInput') ;

disp('--");

pause (1) ;

VarInput %Input user defined variables through VarInput script.
disp ('VarInput Complete!');

disp('--");

pause (1) ;

%Calculate angles for radial distances

%to pass to other functions
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alpha = atan(sLane-2*rTurn)
beta = acos((2*rTurn) /sqgrt (
zeta = Pi/2 - (beta-alpha);

5

%Call functions

%*************************************************************************

/ (vMan*tMan) ;
(vMan*tMan) *2+ (sLane-2*rTurn) *2)) ;

N = nodalCount (bNodes, tNodes, rNodes) ;
X = xCount (bNodes, tNodes, rNodes, sBuff, rTurn, vMan, tMan, zeta, sLane);
Y = yCount (bNodes, tNodes, rNodes, sBuff, rTurn, vMan, tMan, zeta, sLane);
Z = zCount (bNodes, tNodes, rNodes, sBuff, rTurn, vMan, tMan, zeta);
THETA = thCount (bNodes, tNodes, rNodes, sBuff, rTurn, vMan, tMan,

sLane, zeta);
S = sCount (bNodes, tNodes, rNodes, sBuff, rTurn, vMan, tMan,

sLane, zeta);
T = tCount (bNodes, tNodes, rNodes, sBuff, rTurn, vMan);
CH = chCount (bNodes, tNodes, rNodes, sBuff, rTurn, vMan, tMan,

sLane, zeta);
PSI = psiCount (bNodes, tNodes, rNodes, sBuff, rTurn, vMan, tMan,

sLane, zeta);
PHI = phiCount (bNodes, tNodes, rNodes, Kt, Ct, m, g, Ll, L2, L3, h, rTurn,...

vMan, eps);

DPHI = dphiCount (bNodes, tNodes, rNodes, Kt, Ct, m, g, L1, L2, L3, h, rTurn, vMan, eps);
DDPHI = ddphiCount (bNodes, tNodes, rNodes, Kt, Ct, m, g, L1, L2, L3, h, rTurn, vMan,
eps) ;
DPSI = dpsiCount (bNodes, tNodes, rNodes) ;

%

%Compile data into single matrix
DA =

[N S CH PHI THETA PSI X Y Z DPHI DDPHI DPSI];
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VARIABLE INPUT SCRIPT MATLAB SOURCE CODE
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%**************************************************************************

$VarInput: Variable Input, V1
%**************************************************************************
$This script consolidates all of the user defined variables into a single
$location for ease of modification.

o°

NOTE: All units are inches, seconds, slugs, pounds, and radians

o0

o o

PARENT FUNCTION: This script is called in ManPro

o°

LR RS S SRS SRR SRR RS E R E R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

VARIABLE DEFINITIONS
R R X

o0

o° o

$vMan Body speed, in/sec

%$tMan Time of maneuver, sec

$sBuff Entry (zone 1) distance, in

$rTurn Radial curve radius, in

%$sLane Center-center lane distance, in
%$bNodes Desired zone 1 nodal count, #
%tNodes Desired zone 3 nodal count, #
$rNodes Desired zone 2 nodal count, #

$P1 Define pi for radial calculations
%g Define gravitational constant, in/s”2
sm Body mass, slug

%h Height of body above ground, in

$L1 Body length, in

$L2 Body width, in

L3 Body height, in

%Ct Rotational damper constant, in-1lb-s
$Kt Rotational spring constant, in-1b
$H_CG CG location, in

$L_gyro Width of rotor, in

$R_gyro Gyro radius, in

$rho Density of rotor material, slug/in”3
$V_rotor Rotor volume, in”3

%m_rotor Rotor mass, slug

$rotor_speed Speed of rotor, rev/min
%dtheta_gyro Gyroscope angular velocity, rad/sec
$ixx_gyro Gyro mass moment along x axis, in™4
$iyy_gyro Gyro mass moment along y axis, in™4

%**************************************************************************

%$Body Inputs

%**************************************************************************

pause (1) ;

vMan = 968; %in/s, equivalent to 55mph
tMan = 5; %$sec, time to swerve

sBuff = 1000; %in, Buffer distance

rTurn = 1200; %in, turn radius

sLane = 144; %$in, lane distance (12ft)
bNodes = 28; %#, nodes in buffer

tNodes = 36; %#, tangent nodes

rNodes = 26; %#, radial turn nodes

Pi = 3.1415926535897932384626433832795; %define pi
g = 386.088; %$in.s”2, gravity

eps = 7.731E-3; $rad, epsilon, equiv. to 1 in distance

%**************************************************************************
$TRAILER DATA:

$http://tractor-trailer.model .ntrci.org/test/test.cgi?model=1&navv=2
%********************************************************************
%$Year: 1988

%$Make: Pines

%$Model: 48' Van

m = 984.876; $mass, slugs

h = 72.1; %in, height, lower rail

L1 = 565; %in, total length, D+E+F+K

L2 = 102.5; %$in, Width, A

L3 = 114.5; %$in, Cab height, W-L

Ct = 6E5; %$in-1lb-sec, rotary damper coefficient
Kt = 1E8; %in-1b, spring coefficient
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H CG = h+L3/2;
%**************************************************************************
%$GYRO DATA
%**************************************************************************
L gyro = 6; %rotor thickness (in)

R_gyro = 48; %gyro radius (in)

rho = 2.14468277435E-2; %density depleted uranium, slug/in”3

rotor speed = -10000; %speed in RPM
%**************************************************************************
$Intermediate calculations

V_rotor = Pi*R gyro”2*L gyro; %calculate volume to find mass

m _gyro = V_rotor*rho; %gyro mass (slugs)

dtheta gyro = (rotor speed*2*Pi)/60; %convert RPM to rad/s

ixx gyro = 0.083333*m gyro* (3*R_gyro”2+L_gyro™2); %x mass moment

iyy gyro = 0.5*m _gyro*R gyro”2; %y mass moment
%**************************************************************************
$PERFORM CHECK-OUT
%**************************************************************************
%Check that input data is OK with constraints, if not, exit.

Jphi = (L2*L373)/12+L2*L3* (h+L3/2)"2; %Calculate Jphi for checks

H = h+L3/2;%Calculate H for checks

Al = Ct/Jphi;
A2 = (Kt-m*g*H) /Jphi;
Bl = Ct™2;

B2 = 4*m*Kt;

pause (1) ;

disp ('Running VarInput data checks');

disp('--")

pause (1) ;

disp ('Checking discriminant') ;

disp('--");

pause (1) ;

if (A1™2 - 4*A2)<0
disp('Discriminant less than zero, check OK') ;
disp('--")
disp ('Checking for underdamped system') ;
disp('--');
pause (1) ;

else
disp ('WARNING: Discriminant larger than zero');
disp('--');
pause (1) ;

end;

if Bl < B2
disp ('Underdamped system, check OK')
disp('--");
pause (1) ;
disp ('VarInput checks complete.');
disp('--');
pause (1) ;
else
disp ('WARNING: System is not underdamped.');
disp('--');
pause (1) ;
end;

%**************************************************************************

%$Clear Variables no longer needed
%**************************************************************************

clear Jphi H Al Bl A2 B2 %clear variables since no longer needed
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